Prof. Marcus Ennes
Prof. Felippe Garcia

Química Inorgânica

UNIDADE 23: Funções Inorgânicas - Ácidos

Durante o desenvolvimento da ciência foram descobertas diversas substâncias. Algumas apresentavam características corrosivas, outras explosivas, enquanto algumas pareciam inertes.

Muitas substâncias interagiam conosco através dos cinco sentidos, nas propriedades chamadas organolépticas. Frutas como limão apresentavam um sabor azedo, o que deu origem a um novo tipo de classificação para as substâncias. O termo "ácido" vem do latim "acere", que significa azedo. Este era um exemplo de ácido natural.

Os relatos indicam que um dos primeiros ácidos preparados em laboratório foi o ácido sulfúrico, obtido por volta de 1600 pelo alquimista belga Jan Helmont (1580-1644). Muitos anos depois, em 1772, foi descoberto pelo cientista britânico Joseph Priestley (1733-1804) o ácido clorídrico, que quando borbulhado em água formava uma solução ácida. A mistura foi chamada de "ácido muriático", já que no latim "muria" significa "salmoura", e o ácido clorídrico era preparado a partir da reação do ácido sulfúrico com o cloreto de sódio, nosso sal de cozinha.

Entretanto nem todos os ácidos têm o caráter corrosivo ao qual a maioria das pessoas associa-os. O ácido sulfídrico por exemplo, responsável pelo odor de ovo podre, é um ácido fraco.

Ácidos de Arrhenius

De acordo com a teoria do químico sueco Svante Arrhenius (1859-1927), um ácido é uma substância que, quando em solução aquosa, ioniza-se liberando apenas o H⁺ como cátion, conforme o seguinte exemplo:

$$HCl_{(aq)} \rightarrow H^{+}_{(aq)} + C\ell^{-}_{(aq)}$$

Tal ionização ocorre devido às ligações covalentes formadas pelo hidrogênio se romperem heteroliticamente quando estão na presença de água, formando o íon H_3O^+ , também conhecido como hidrônio. São exemplos de ácidos: H_2SO_4 — Ácido Sulfúrico; HNO_3 — Ácido Nítrico; $HC\ell$ — Ácido Clorídrico.

Características

- A ligação entre os átomos é covalente, ou seja, são compostos moleculares;
- Quando diluídos, formam soluções eletrolíticas (que conduzem corrente elétrica);
- Ao reagir com metais, liberam gás Hidrogênio (H₂).

Classificações dos ácidos Quanto à presença de oxigênio

- Hidrácidos: Não apresentam átomos de oxigênio em sua fórmula, apenas hidrogênio e ametal.

Exemplos: HBr, HI, HCℓ e H₂S.

- Oxiácidos: Apresentam, além de hidrogênio e ametal, átomos de oxigênio em sua fórmula.

Exemplos: H₂SO₄, H₃PO₄, HNO₃ e HClO₄.

Quanto ao número de hidrogênios ionizáveis

Nos oxiácidos, os átomos de hidrogênio ionizáveis estão ligados aos átomos de oxigênio. Nos hidrácidos todos os átomos de hidrogênio serão ionizáveis. Existem alguns oxiácidos nos quais nem todos os átomos de hidrogênio estão ligados à átomos de oxigênio, portanto devemos ter sempre em mente a estrutura da molécula. Na maioria dos casos o número de átomos de hidrogênio na fórmula já é o número de hidrogênios ionizáveis. Tendo isto em mente, podemos classificar os ácidos como:

- **Monoácidos:** Apresentam apenas 1 átomo de hidrogênio ionizável;

Exemplos: HCl, HF, HI, HNO₃, H₃PO₂.

- **Diácidos:** Apresentam 2 átomos de hidrogênio ionizáveis;

Exemplos: H₂S, H₂SO₄, H₃PO₂.

- **Triácidos:** Apresentam 3 átomos de hidrogênio ionizáveis;

Exemplo: H₃PO₄.

- **Tetrácidos**: Apresentam 4 átomos de hidrogênio ionizáveis;

Exemplo: H₄P₂O₇.

Quanto à Força

A força dos ácidos está relacionada ao grau de ionização (α) dos mesmos. O grau de ionização representa a porcentagem do total de moléculas que sofrerá ionização. O ácido mais forte é aquele que apresenta uma maior facilidade de liberar íons H⁺ em relação à substância não ionizada. Observe a tabela que relaciona valores de α e força de ácidos:

Grau de ionização	Força
α ≤ 5%	Fraco
5% < α < 50%	Moderado
α ≥ 50%	Forte

Porém, em uma maneira mais qualitativa para determinação de força de um ácido, para fins comparativos, temos as seguintes regras:

Hidrácidos		
Fortes HCl, HBr, HI		
Moderado	HF	
Fracos	Todos os demais	

Para os oxiácidos existe uma relação entre a quantidade de átomos de hidrogênio e oxigênio. De maneira geral podemos subtrair o número de átomos de hidrogênio do número de átomos de oxigênio, obtendo um valor ao final. Quanto maior for a diferença entre o número de oxigênios e o número de hidrogênios ionizáveis, mais forte será o ácido.

Oxiácidos		
Fortes	Oxigênios - Hidrogênios ≥ 2	
Moderados	Oxigênios - Hidrogênios = 1	
Fracos	Oxigênios - Hidrogênios ≤ 0	

Exemplos:

 H_2SO_4 : 4 - 2 = 2 → Ácido forte HC&O: 1 - 1 = 0 → Ácido fraco HNO_2 : 2 - 1 = 1 → Ácido moderado

Como exceção à regra dos oxiácidos temos o ácido carbônico (H_2CO_3) , que teoricamente era para ser classificado como moderado (3 - 2 = 1), porém sabendo-se da natureza instável desta espécie (sofre decomposição facilmente em CO_2 e H_2O), a mesma é classificada como fraca.

Quanto à volatilidade

A volatilidade de uma substância é a facilidade que a mesma apresenta em passar da fase líquida para a fase gasosa à temperatura ambiente. Assim, quanto mais volátil é uma substância, mais facilmente ela passará para o estado gasoso.

- Ácidos voláteis: À temperatura ambiente, a substância em questão está na fase gasosa ou é um líquido volátil (evapora com facilidade).

Exemplo: H₂S, HBr, HCN.

- **Fixos:** A substância está na fase sólida ou é um líquido pouco volátil.

Exemplos: H₂SO₄, HCℓO₄.

Nomenclatura

Cada tipo de ácido terá uma dinâmica específica de nomenclatura. Assim teremos uma nomenclatura para os hidrácidos e outra para os oxiácidos.

Hidrácidos

Ácido + Nome do ametal + ÍDRICO

Exemplos:

HCl – Ácido Clorídrico HI – Ácido Iodídrico

 H_2S – Ácido Sulfídrico

HCN – Ácido Cianídrico

Oxiácidos

Ácido + PREF. + Nome do ametal + SUF.

Para que haja a associação do prefixo e do sufixo correspondente à fórmula do ácido, antes de se fazer a nomenclatura, deve-se calcular o N.Ox. do elemento central do ácido (ametal), e assim, teremos uma tabela, que relacionará cada família e seus respectivos N.Ox. possíveis, observe:

4A	5A	6A	7A	Prefixo	Sufixo
-	+1	-	+1	hipo	oso
-	+3	+4	+3	-	oso
+4	+5	+6	+5	-	ico
-	-	-	+7	per	ico

Exemplos:

 $H_2SO_4 - N.Ox.$ do Enxofre (S) = +4 Família 6A, N.Ox. +4 \rightarrow sufixo "ico" Ácido sulfúrico HC ℓ O₄− N.Ox. do cloro (CI) = +7 Família 7A,N.Ox. +7 \rightarrow prefixo "per", sufixo "ico" Ácido perclórico

HBrO – N.Ox. do bromo (Br) = +1
Família 7A, N.Ox. +1 → prefixo "per", sufixo "oso"
Ácido hipobromoso

 $H_2CO_3 - N.Ox.$ do carbono (C) = +4 Família 4A, N.Ox. +4 \rightarrow sufixo "ico" Ácido carbônico

NOTAS:

ATIVIDADES PROPOSTAS

1) A chuva ácida é causada por reações químicas que acontecem entre os gases poluentes, sobretudo SO₂ e SO₃, liberados na atmosfera, e o vapor d'água. Como consequência, há a formação de ácidos, conforme as seguintes reações:

I.
$$SO_2 + H_2O \rightarrow H_2SO_3$$

II. $SO_3 + H_2O \rightarrow H_2SO_4$

Os nomes dos ácidos formados nas reações I e II, respectivamente, são:

- a) ácido sulfuroso e ácido sulfúrico,
- b) ácido sulfúrico e ácido sulfuroso.
- c) ácido sulfúrico e ácido sulfídrico.
- d) ácido sulfídrico e ácido sulfúrico.
- e) ácido sulfuroso e ácido sulfídrico.
- 2) No século XIX, o cientista Svante Arrhenius definiu ácidos como sendo as espécies químicas que, ao se ionizarem em solução aquosa, liberam como cátion apenas o íon H^+ . Considere as seguintes substâncias, que apresentam hidrogênio em sua composição: C_2H_6 , H_2SO_4 , NaOH, NH_4CI .

Dentre elas, aquela classificada como ácido, segundo a definição de Arrhenius, é:

- a) C_2H_6
- b) H₂SO₄
- c) NaOH
- d) NH₄Cl

TEXTO PARA A PRÓXIMA QUESTÃO:

Leia o trecho abaixo sobre o processo de *desenvenenamento* da mandioca, produzido por povos indígenas da região da Amazônia:

Inicialmente, a raiz da planta é colocada durante a noite ou por alguns dias em um riacho, até que começa uma leve fermentação ácida. Essa fermentação tem diversos efeitos: os micro-organismos ou os produtos de seu metabolismo atacam as paredes dos vacúolos das células em que estão depositados os glicosídeos cianogênicos e possibilitam, assim,

que a linamarina entre em contato com a linamarase, de modo que mais ácido cianídrico (HCN) é liberado. Além disso, por causa dos micro-organismos gerados na fermentação, também se produz linamarase, que decompõe a linamarina, e, além disso, em função do baixo valor do pH, cria-se o ambiente que intensifica a atividade da enzima já existente na planta. Com a diminuição do valor do pH, o equilíbrio dissociativo do ácido cianídrico é deslocado na direção do ácido cianídrico, e o ácido cianídrico indissociado é removido do líquido. Após a exposição à água, as cascas do tubérculo devem ser removidas, já que nelas encontra-se uma concentração particularmente elevada dos glicosídeos cianídricos.

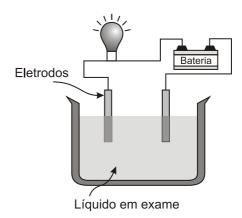
Jens Soentgen; Klaus Hilbert.Quím.Nova, vol. 39, nº 9, 2016.

- 3) De acordo com o texto, no processo de fermentação, ocorre a liberação da substância responsável pela toxicidade da mandioca, a qual faz parte de um grupo estudado em química inorgânica. Identifique abaixo a alternativa que apresenta uma outra substância que faz parte do mesmo grupo do "veneno" que a mandioca possui.
- a) NH₃
- b) H₂O
- c) H₂CO₃
- d) CO₂
- 4) Na série Prison Break (FOX), Michael Scofield utiliza um composto chamado Kesslivol para corroer o aço e destruir a cerca de proteção da prisão SONA, no Panamá. Na verdade, o Kesslivol não existe, mas o aço pode ser corroído pela ação de um ácido forte e oxidante.

Qual dos ácidos abaixo Scofield poderia usar para fugir da prisão?

- a) H₃BO₃
- b) HCl
- c) HCN
- d) HNO₃
- e) CH₃COOH

5) Os ácidos estão muito presentes em nosso cotidiano, podendo ser encontrados até mesmo em nossa alimentação. A tabela abaixo apresenta alguns ácidos e suas aplicações.


Nome	Fórmula Molecular	Aplicação
Ácido sulfúrico	H ₂ SO ₄	Consumido em grandes quantidades na indústria petroquímica
Ácido fluorídrico	HF	Utilizado para gravação em vidro
Ácido carbônico	H₂CO₃	Utilizado para gaseificar águas e refrigerantes

A força dos ácidos dispostos na tabela, respectivamente, é

- a) Forte, forte e moderado.
- b) Moderado, fraco e moderado.
- c) Moderado, fraco e fraco.
- d) Forte, moderado e fraco.
- 6) A chuva ácida é um fenômeno químico resultante do contato entre o vapor de água existente no ar, o dióxido de enxofre e os óxidos de nitrogênio. O enxofre é liberado, principalmente, por veículos movidos a combustível fóssil; os óxidos de nitrogênio, por fertilizantes. Ambos reagem com o vapor de água, originando, respectivamente, os ácidos sulfuroso, sulfídrico, sulfúrico e nítrico.

Assinale a opção que apresenta, respectivamente a fórmula desses ácidos

- a) H_2SO_3 , H_2S , H_2SO_4 , HNO_3 .
- b) H₂SO₃, H₂SO₄, H₂S, HNO₂.
- c) HSO₄, HS, H₂SO₄, HNO₃.
- d) HNO₃, H₂SO₄, H₂S, H₂SO₃.
- e) H₂S, H₂SO₄, H₂SO₃, HNO₃.
- 7) Observe o esquema representado abaixo.

Sabe-se que a força de um ácido, na teoria, é indicada por uma grandeza chamada grau de ionização (α), isto é, pela relação matemática entre o número de moléculas ionizadas e o número total de moléculas dissolvidas. Na prática, para os oxiácidos, existe uma relação estreita entre a quantidade de Hácido e o número de átomos de oxigênios (O) presente na molécula do oxiácido. Assim sendo, em qual das soluções – de mesma concentração e na mesma temperatura – a lâmpada do esquema apresenta maior brilho?

- a) H_2CO_3 .
- b) HClO₄.
- c) H₄SiO₄.
- d) HNO₃.
- e) H₃PO₂.
- 8) Os ácidos H₂SO₄, H₃PO₄ e HClO₄, são de grande importância na indústria (por exemplo, na produção de fertilizantes). Assinale a alternativa que apresenta corretamente a ordem crescente de acidez destas espécies.
- a) H₃PO₄, H₂SO₄, HClO₄.
- b) H₂SO₄, H₃PO₄, HClO₄.
- c) HClO₄, H₂SO₄, H₃PO₄.
- d) HClO₄, H₃PO₄, H₂SO₄.
- e) H₃PO₄, HClO₄, H2SO₄.
- 9) O processo de industrialização tem gerado sérios problemas de ordem ambiental, econômica e social, entre os quais se pode citar a chuva ácida. Os ácidos usualmente presentes em maiores proporções na água da chuva são o H₂CO₃, formado pela reação do CO₂ atmosférico com a água, o HNO₃, o HNO₂, o H₂SO₄ e o H₂SO₃. Esses quatro últimos são formados principalmente a partir da reação da água com

os óxidos de nitrogênio e de enxofre gerados pela queima de combustíveis fósseis.

A formação de chuva mais ou menos ácida depende não só da concentração do ácido formado, como também do tipo de ácido. Essa pode ser uma informação útil na elaboração de estratégias para minimizar esse problema ambiental. Se consideradas concentrações idênticas, quais dos ácidos citados no texto conferem maior acidez às águas das chuvas?

- a) HNO₃ e HNO₂.
- b) H₂SO₄ e H₂SO₃.
- c) H₂SO₃ e HNO₂.
- d) H₂SO₄ e HNO₃.
- e) H_2CO_3 e H_2SO_3 .
- 10) Leia os dados da tabela, a seguir:

Ácido	pKa
HF	3,2
HCℓ	10 ⁻⁷
HBr	10 ⁻⁹
HI	10 ⁻¹¹

Considerando esses dados e as propriedades periódicas dos elementos químicos, a força desses ácidos aumenta quanto

- a) menor a densidade absoluta do halogênio.
- b) maior o raio do halogênio.
- c) menor o ponto de fusão e ebulição do halogênio.
- d) maior o potencial de ionização do halogênio.
- e) maior a eletronegatividade do halogênio.
- 11) Considerando os Oxiácidos H_2SO_4 , $HC\ell O_4$, $HC\ell O_4$, $HC\ell O_6$, podemos dizer que a ordem decrescente correta quanto à força é:
- a) HClO, HClO₄, H₂SO₄
- b) HClO₄, H₂SO₄, HClO
- c) HClO₄, HClO, H₂SO₄
- d) HClO, H2SO4, HClO4
- e) H₂SO₄, HClO, HClO₄
- 12) A tabela apresenta algumas características e aplicações de alguns ácidos:

Nome do ácido	Aplicações e características	
Ácido muriático	Limpeza doméstica e de peças metálicas (decapagem)	
Ácido fosfórico	Usado como acidulante em refrigerantes, balas e gomas de mascar	
Ácido sulfúrico	Desidratante, solução de bateria	
Ácido nítrico	Indústria de explosivos e corantes	

As fórmulas dos ácidos da tabela são, respectivamente:

- a) HCl, H₃PO₄, H₂SO₄, HNO₃.
- b) HClO, H₃PO₃, H₂SO₄, HNO₂.
- c) HCl, H₃PO₃, H₂SO₄, HNO₂.
- d) HClO₂, H₄P₂O₇, H₂SO₃, HNO₂.
- e) HClO, H₃PO₄, H₂SO₃, HNO₃.
- 13) Os ácidos, segundo a teoria de dissociação de Arrhenius, são compostos moleculares que, ao ser dissolvidos em água, geram íons H⁺. Como é chamado o processo de formação de íons que ocorre quando um ácido é dissolvido em água?
- a) Dissociação iônica.
- b) Ionização.
- c) Eletrólise.
- d) Hidratação.
- e) Eletrolítica.
- 14) Com relação aos oxiácidos, sabe-se que ácidos com sufixo "oso" apresentam um oxigênio a menos que os terminados em "ico". Com base nisso, assinale a alternativa que completa corretamente os espaços em branco na tabela abaixo respectivamente:

Nome	Fórmula	
Ácido nítrico	HNO ₃	
Ácido nitroso		
	H ₃ PO ₄	
Ácido fosforoso	H ₃ PO ₃	
Ácido sulfúrico	H ₂ SO ₄	
	H ₂ SO ₃	

- a) H₂NO₃, ácido fosforídrico, ácido sulfuroso
- b) HNO₂, ácido fosforídrico, ácido sulfuroso
- c) H₂NO₃, ácido fosfórico, ácido sulfídrico

- d) HNO2, ácido fosfórico, ácido sulfuroso
- e) H₂NO₃, ácido fosfórico, ácido sulfuroso
- 15) A água da chuva é naturalmente ácida em virtude da presença normal de $CO_2(g)$ (dióxido de carbono) na atmosfera, que reage com a água e forma o ácido de fórmula $H_2CO_{3(aq)}$. No entanto, óxidos de enxofre, como o $SO_{2(g)}$, e de nitrogênio, como o $NO_{2(g)}$, contribuem para elevar ainda mais o pH da água, porque, ao se combinar com ela, eles reagem e formam os ácidos $H_2SO_{3(aq)}$ e $HNO_{3(aq)}$. Os nomes respectivos dos três ácidos mencionados são:
- a) carbônico, sulfúrico e nítrico.
- b) carbônico, sulfuroso e nítrico.
- c) carbonoso, sulfuroso e nitroso.
- d) percarbônico, persulfúrico e nítrico.
- e) hipocarbonoso, sulfúrico e hiponitroso.
- 16) Para distinguir uma solução aquosa de HF (ácido fraco) de outra de HCl (ácido forte), de mesma concentração, foram efetuados os seguintes procedimentos independentes com cada uma das soluções.
- I. Determinação da temperatura de congelamento do solvente.
- II. Medida de pH.
- III. Teste com uma tira de papel tornassol azul.
- IV. Medida de condutibilidade elétrica das soluções.

Os procedimentos que permitem distinguir entre essas soluções são:

- a) I, II e IV, apenas.
- b) II, III e IV, apenas.
- c) II e IV, apenas.
- d) III e IV, apenas.
- e) IV, apenas.
- 17) De acordo com o padrão de nomenclatura dos ácidos, determine qual será o nome dos ácidos cujas fórmulas encontram-se representadas a seguir: HNO₃, H₂MnO₄, HNO₂, H₂CrO₄, e HMnO₄
- a) ácido hiponitroso; ácido mangânico; ácido nítrico; ácido crômico; ácido permangânico.
 b) ácido nitroso; ácido permangânico; ácido nítrico; ácido crômico; ácido mangânico.

- c) ácido nítrico; ácido permangânico; ácido nitroso; ácido crômico; ácido mangânico.
- d) ácido nitroso; ácido mangânico; ácido nítrico; ácido crômico; ácido permangânico.
- e) ácido nítrico; ácido mangânico; ácido nitroso; ácido crômico; ácido permangânico.
- 18) Admitindo-se 100% de ionização para o ácido clorídrico em solução diluída, pode-se afirmar que essa solução não contém a espécie:
- a) HCl
- b) OH
- c) H₃O⁺
- d) H₂O
- e) Cl-
- 19) Dentre as espécies químicas, enumeradas, é classificado como ácido de Arrhenius:
- a) Na₂CO₃
- b) KOH
- c) Na₂O
- d) H₂S
- e) LiH
- 20) Os ácidos podem ser classificados quanto ao número de hidrogênios ionizáveis. O ácido hipofosforoso, H₃PO₂, utilizado na fabricação de medicamentos, apresenta fórmula estrutural:

$$O \stackrel{\text{H}}{\longleftarrow} P - O - H$$

O número de hidrogênios são ionizáveis no ácido hipofosforoso é

- a) 0
- b) 1
- c) 2
- d) 3

GABARITOS

- 1) A
- 2) B
- 3) C
- 4) D
- 5) D
- 6) A
- 7) B
- 8) A
- 9) D
- 10) B
- 11) B
- 12) A
- 13) B
- 14) D
- 15) B
- 16) A
- 17) E
- 18) A
- 19) D
- 20) B