Prof. Marcus Ennes **Prof.** Felippe Garcia

Fisico-química

UNIDADE 48: Equilíbrio iônico – Parte 1

Na química podemos classificar o equilíbrio em basicamente dois tipos: o molecular e iônico. No equilíbrio molecular estão presentes apenas espécies sem carga. Temos como exemplos de equilíbrios molecular e iônico, respectivamente, os casos da reação de formação/decomposição da amônia e autoprotólise da água:

$$N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$$

 $H_2O_{(l)} \rightleftharpoons H^+_{(aq)} + OH^-_{(aq)}$

Já no equilíbrio iônico estão presentes espécies com carga (íons). A constante de equilíbrio (K_c) para estes casos pode passar a receber um nome diferente: constante de ionização (K_i) ou constante de dissociação. Para os ácidos temos a constante de ionização representando a constante de acidez (K_a), enquanto para as bases temos a constante de dissociação representando a constante de basicidade (K_b).

Constante de acidez (Ka)

Para definir a constante de acidez partimos da equação química geral de ionização de um ácido monoprótico (que possui apenas um hidrogênio ionizável). O símbolo A representa o ânion do ácido.

$$HA_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + A^-_{(aq)}$$

Podemos definir a constante de acidez como:

$$K_a = \frac{[H_3O^+] \cdot [A^-]}{[HA]}$$

Onde concentração de íons H₃O⁺ pode ser escrita também na forma de concentração de íons H⁺. Pode-se a partir desta equação generalizar que quanto maior for o valor de K_a, maior será o numerador e menor será o denominador, logo maiores serão as concentrações dos íons H⁺ e A⁻, portanto maior será a força do ácido. Estendendo o raciocínio e utilizando a escala de cologaritmo (-log), podemos afirmar que quanto maior o K_a, menor o pK_a, e portanto quanto menor o pK_a, mais forte será o ácido.

A partir da equação anterior também é possível saber a concentração de todas as espécies a partir da molaridade do ácido (M_{HA}) e da constante de acidez (K_a).

Por exemplo, suponha que deseja-se saber a concentração de íons H⁺ para uma solução de ácido monoprótico com concentração 1,0 M (1,0 mol/L) e constante de acidez 10⁻⁶, de forma que:

$$K_a = \frac{[H^+] \cdot [A^-]}{[HA]} = 10^{-6}$$

Para simplificar e elucidar melhor o raciocínio trabalharemos com uma tabela, na qual trataremos das concentrações de todas as espécies presentes nos momentos inicial, intermediário e final. Observe:

	conc. em mol/L		
	[HA]	[H ⁺]	[A ⁻]
início	1,0	0	0
durante	-X	+χ	+χ
equilíbrio	(1 - x)	(0 + x)	(0 + x)

Inicialmente temos o ácido totalmente não-ionizado, ou seja, nenhuma molécula sofreu ionização ainda, logo toda a concentração (1 mol/L) encontra-se sob a forma de HA.

Durante o processo de ionização, para chegar ao equilíbrio, consumiu-se uma quantidade desconhecida desses 1 mol/L, chamada de "-x". O sinal negativo de "-x" indica que houve consumo. A partir de agora tenha em mente os coeficientes estequiométricos das espécies (1 HA : 1 H⁺ : 1 A⁻). Se foram consumidos "x" mol de HA pode-se afirmar que foram formados "x" mol de H⁺ e A⁻, pois cada 1 mol de HA ioniza-se em 1 mol de H⁺ e 1 mol A⁻, logo x mol de HA ionizarão em x mol de H⁺ e x mol de A⁻.

Ao final do processo o sistema está em equilíbrio. A concentração final de HA será a inicial (1,0 mol/L) menos o que foi consumido (x). A concentração final de H⁺ e A⁻ será a concentração inicial (0 mol/L) mais o que foi produzido (x). Substituindo estes termos na equação de K_a teremos:

$$K_a = \frac{x \cdot x}{(1 - x)} = 10^{-6}$$

$$x^{2} = 10^{-6}(1 - x)$$

$$x^{2} = 1 \cdot 10^{-6} - x \cdot 10^{-6}$$

$$x^{2} + x \cdot 10^{-6} - 10^{-6} = 0$$

Chegamos então a uma equação do segundo grau para a qual temos os termos a = 1, b = 10^{-6} e c = -10^{-6} . Chegamos a um ponto no qual temos duas opções. Na primeira opção resolvemos através do cálculo de delta (Δ):

$$\Delta = (10^{-6})^2 - 4 \cdot 1 \cdot (-10^{-6})$$
$$\Delta = (10^{-12}) + 4 \cdot 10^{-6}$$
$$\Delta = 4 \cdot 10^{-6}$$

Podemos afirmar que 10^{-12} corresponde a um valor desprezível em relação ao termo $4 \cdot 10^{-6}$, logo podemos afirmar que esta soma será praticamente $4 \cdot 10^{-6}$. Dando continuidade, aplicando a fórmula para encontrar o valor de x:

$$x = \frac{-10^{-6} \pm \sqrt{4 \cdot 10^{-6}}}{2}$$

A partir deste ponto excluímos a raiz negativa de delta, pois "x" corresponde a um valor de concentração, e portanto não pode ser negativo.

$$x = \frac{-10^{-6} + 2 \cdot 10^{-3}}{2}$$

Novamente temos uma discrepância significativa entre os termos da equação. O termo 10^{-6} pode ser considerado desprezível frente ao termo $2 \cdot 10^{-3}$. Obteremos por fim:

$$x = \frac{2 \cdot 10^{-3}}{2} = 10^{-3} \text{ mol/L}$$

Na segunda opção temos a seguinte análise: como o termo "b" é muito pequeno em

relação ao termo "a", podemos dizer que este afeta desprezivelmente o resultado da equação, e portanto pode ser ignorado. Desta forma teremos:

$$x^{2} + x \cdot 10^{-6} - 10^{-6} = 0$$

$$x^{2} - 10^{-6} = 0$$

$$x^{2} = 10^{-6}$$

$$x = \pm \sqrt{10^{-6}}$$

Novamente descartaremos a raiz negativa, visto que por se tratar de uma concentração, "x" só pode assumir valores positivos.

$$x = 10^{-3} \text{ mol/L}$$

Após fazer das duas formas certamente concluímos que a segunda opção é bem mais prática. Entretanto devemos saber que há uma limitação para seu uso. Apenas para ácidos com constantes da ordem de 10⁻⁵ ou menor podemos fazer esta aproximação.

Caso haja mais de uma etapa de ionização (ácidos polipróticos), cada etapa terá seu próprio valor de constante de ionização (K_{a1} , K_{a2} , K_{a3} , ...). Lembre-se que de maneira geral a segunda constante de ionização é sempre menor que a primeira, pois torna-se mais difícil retirar o segundo íon H^{\dagger} após a perda do primeiro.

Se quisermos obter a constante da reação de ionização total do ácido devemos multiplicar as constantes de ionização de cada etapa de ionização. Por exemplo, para o ácido diprótico genérico H₂A:

$$H_2A_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + HA^-_{(aq)} K_{a1}$$

 $HA^-_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + A^{-2}_{(aq)} K_{a2}$

Acima estão representadas as duas etapas de ionização separadamente. Abaixo temos a equação de ionização global, que consiste na soma destas duas equações:

$$H_2A_{(aq)} + 2H_2O_{(l)} \rightleftharpoons 2H_3O^+_{(aq)} + A^{-2}_{(aq)}K_a$$

Temos então a relação entre as constantes K_{a1} , K_{a2} e K_{a} , equacionadas abaixo:

$$K_{a1} = \frac{[H^+] \cdot [HA^-]}{[H_2A]}$$

$$K_{a2} = \frac{[H^+] \cdot [A^{-2}]}{[HA^-]}$$

$$K_a = K_{a1} \cdot K_{a2} = \frac{[H^+]^2 \cdot [A^{-2}]}{[H_2 A]}$$

Assim como para um ácido monoprótico, também é possível elucidar uma tabela e descobrir a concentração final de todas as espécies a partir do valor de K_a e da molaridade do ácido (H₂A).

Constante de acidez (Kb)

O conceito para constante de basicidade é análogo ao conceito de constante de acidez. Lembre-se que uma base não é necessariamente uma espécie que possui hidroxila (OH⁻). Substâncias como a amônia podem se comportar como base. Para um exemplo genérico de base (B), temos:

$$B_{(aq)} + H_2O_{(l)} \rightleftharpoons BH^+_{(aq)} + OH^-_{(aq)}$$

Neste caso a água atua como ácido. Podemos definir a constante de basicidade como:

$$K_{b} = \frac{[BH^{+}] \cdot [OH^{-}]}{[B]}$$

Da mesma forma que K_a, quanto maior o valor de K_b, maior será a força da base.

O mesmo raciocínio elucidado através da tabela também é válido para K_b, logo também é possível através desta equação calcular a concentração de todas as espécies a partir do valor de K_b e da concentração da base.

Lei da diluição de Ostwald

Para entendermos a lei de diluição de Ostwald, formulado em 1888 pelo químico alemão Friedrich Wilheim Ostwald (1853 – 1932) temos que dominar o conceito de grau de ionização (α). O grau de ionização representa a fração do total de moléculas que encontra-se na forma de íons. O valor de α varia de 0 a 1. Também pode ser representado através de uma porcentagem. Para converter a porcentagem para valores no intervalo entre 0 e 1 basta dividir o valor por 100, de forma que 100% = 1, 50% = 0.5, 30% = 0.3, etc. Chamando o número total de mol de moléculas presentes de " n_t " e o número total de moléculas ionizadas de " n_i " temos " α " definido como:

$$\alpha = \frac{n_i}{n_t} \; \therefore \; \alpha \cdot n_t = n_i$$

Ou seja, basta multiplicar "α" pelo total de moléculas para encontrar a fração das mesmas que está ionizada. Multiplicando "α" pela concentração então podemos encontrar a fração da concentração total que encontra-se ionizada. Para um ácido monoprótico genérico HA teremos:

$$[H^+] = [A^-] = \alpha \cdot M_{HA}$$
$$[HA] = (1 - \alpha) \cdot M_{HA}$$

Onde M_{HA} é a molaridade do ácido em solução. O termo $(1-\alpha)$ representa o total, 100% (1), menos o que foi ionizado, α . Substituindo estas concentrações na fórmula de K_a teremos:

$$K_{a} = \frac{[H^{+}] \cdot [A^{-}]}{[HA]}$$

$$K_{a} = \frac{\alpha \cdot M_{HA} \cdot \alpha \cdot M_{HA}}{(1 - \alpha) \cdot M_{HA}}$$

$$K_{a} = \frac{\alpha^{2} \cdot M_{HA}}{(1 - \alpha)}$$

Para valores de grau de ionização menores que 5% (valores de " α " inferiores a 0,05) temos que o termo $(1-\alpha)$ torna-se muito próximo a 1. Com isso podemos simplificar a equação acima para:

$$K_a = \alpha^2 \cdot M_{HA}$$

O que nos deixa com uma conclusão interessante: Já que a constante só varia com a temperatura, mantendo-se a mesma temperatura, quanto maior a molaridade de um ácido fraco (M_{HA}), menor será o grau de ionização (α) do mesmo.

NOTAS:

ATIVIDADES PROPOSTAS

1) O cianeto de hidrogênio (HCN) é um gás extremamente tóxico, que sofre ionização ao ser dissolvido em água, conforme a reação abaixo.

$$HCN_{(aq)} \rightleftharpoons H^{+}_{(aq)} + CN^{-}_{(aq)}$$

Em um experimento, preparou-se uma solução aquosa de HCN na concentração de 0,1 mol·L⁻¹ e grau de ionização igual a 0,5%.

A concentração de íons cianeto nessa solução, em mol·L⁻¹, é igual a:

- a) 2,5 x 10⁻⁴
- b) 5,0 x 10⁻⁴
- c) 2,5 x 10⁻²
- d) 5,0 x 10⁻²
- 2) Considere um recipiente fechado contendo 1,2 mol de uma espécie química $AB_{(g)}$, a certa temperatura. Depois de certo tempo, verificouse que $AB_{(g)}$ foi decomposto em $A_{2(g)}$ e $B_{2(g)}$ até atingir o equilíbrio químico, em que se constatou a presença de 0,45 mol de $B_{2(g)}$. O grau de dissociação, em porcentagem, de $AB_{(g)}$ nas condições apresentadas é igual a:
- a) 25
- b) 50
- c) 75
- d) 90
- 3) Considere que, a 25°C, temos uma solução aquosa de um ácido monoprótico com concentração 0,04 mol/litro e cujo grau de ionização é de 30%. A essa temperatura, o valor da constante de ionização é aproximadamente de:
- a) 3,6 x 10⁻³
- b) 2.3×10^{-6}
- c) $4,5 \times 10^{-3}$
- d) 5.4×10^{-5}
- 4) A ionização do ácido fluoretanoico é representada pela seguinte equação química:

Considere uma solução aquosa com concentração desse ácido igual a 0,05 mol.L⁻¹ e grau de ionização de 20%.

A constante de equilíbrio da reação de ionização desta reação correspondem á:

- a) 2,5 x 10⁻⁵ mol.L⁻¹
- b) 1,2 x 10⁻²mol.L⁻¹
- c) 5 x 10⁻² mol.L⁻¹
- d) 2,5 x 10⁻³mol.L⁻¹
- e) 3,1 x 10⁻²mol.L⁻²
- 5) O ácido etanoico, substância responsável pela acidez do vinagre, é um ácido fraco, com grau de ionização igual a 1%. A concentração de [H⁺] corresponde á:
- a) 10⁻² mol/L
- b) 10⁻⁵ mol/L
- c) 10⁻¹ mol/L
- d) 10⁻⁶ mol/L
- e) 10⁻³ mol/L
- 6) O fluoreto de hidrogênio apresenta-se em solução aquosa como líquido incolor, fumegante e de odor penetrante. É usado na produção da gasolina de alta octanagem, agrotóxicos, detergentes, teflon e no enriquecimento do urânio para fins de energia nuclear.

Considere o equilíbrio iônico do ácido fluorídrico abaixo.

$$HF_{(aq)} + H_2O_{(I)} \rightleftharpoons H_3O^+_{(aq)} + F^-_{(aq)}$$

Sabe-se que o fluoreto de hidrogênio é um ácido fraco, pois de 100 moléculas de HF, somente 3 se ionizarão.

Sendo assim, a concentração de [H⁺] será:

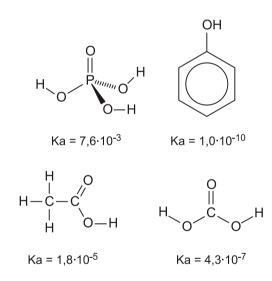
- a) 0,5 mol/L
- b) 1,5 x 10⁻² mol/L
- c) 5 x 10⁻² mol/L
- d) 3 x 10⁻³ mol/L
- e) 4 x 10⁻³ mol/L

7) Considere a concentração de uma solução de ácido acético (CH₃COOH) igual a 0,6 mol/L e o seu grau de ionização igual a 3% em temperatura ambiente. É correto afirmar que

- a) A [H⁺] é igual 0,18.
- b) A [H⁺] é proveniente de duas etapas.
- c) O valor da [CH₃COO⁻] é três vezes maior que a [H⁺].
- d) A constante de ionização é de, aproximadamente, 5,5 x 10⁻⁴.
- 8) Determine, respectivamente, a constante de ionização de uma solução aquosa de um ácido monocarboxílico 0,01 M, a 25°C, que está 20% ionizado, após ter sido atingido o equilíbrio.
- a) 5 x 10⁻²
- b) 3 x 10⁻³
- c) 5 x 10⁻⁴
- d) 5 x 10⁻⁵
- e) 2 x 10⁻³
- 9) Um exemplo do impacto humano sobre o meio ambiente é o efeito da chuva ácida sobre a biodiversidade dos seres vivos. Os principais poluentes são ácidos fortes que provêm das atividades humanas. O nitrogênio e o oxigênio da atmosfera podem reagir para formar NO, mas a reação, mostrada abaixo, endotérmica, é espontânea somente a altas temperaturas, como nos motores de combustão interna dos automóveis e centrais elétricas:

$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2 NO_{(g)}$$

Sabendo que as concentrações de N_2 e O_2 no equilíbrio acima, a 800 ${}^{\circ}$ C, são iguais a 0,10 mol L^{-1} para ambos, calcule a concentração molar de NO no equilíbrio se K = 4,0 x 10^{-20} a 800° C.


- a) 6.0×10^{-7}
- b) 5.0×10^{-8}
- c) 4.0×10^{-9}
- d) 3.0×10^{-10}
- e) 2,0 x 10⁻¹¹
- 10) A presença de tampão é fundamental para manter a estabilidade de ecossistemas menores, como lagos, por exemplo. Íons fosfato, originários da decomposição da matéria

orgânica, formam um tampão, sendo um dos equilíbrios expressos pela seguinte equação:

$$H_2PO_4^{-}_{(aq)} \rightleftharpoons HPO_4^{2-}_{(aq)} + H^{+}_{(aq)}$$

Se no equilíbrio foram medidas as concentrações molares $[H_2PO_4] = 2 \text{ mol} \cdot L^{-1}$, $[HPO_4] = 1 \text{ mol} \cdot L^{-1}$ e $[H^+] = 0,2 \text{ mol} \cdot L^{-1}$, o valor da constante de equilíbrio é:

- a) 2
- b) 0,2
- c) 0,1
- d) 0,01
- 11) Uma substância química é considerada ácida devido a sua tendência em doar íons H⁺ em solução aquosa. A constante de ionização Ka é a grandeza utilizada para avaliar essa tendência. Assim, são fornecidas as fórmulas estruturais de algumas substâncias químicas, com os seus respectivos valores de Ka, a 25°C.

A ordem crescente de acidez das substâncias químicas citadas é

- a) ácido fosfórico < ácido etanoico < ácido carbônico < ácido fênico.
- b) ácido fênico < ácido carbônico < ácido etanoico < ácido fosfórico.
- c) ácido fosfórico < ácido carbônico < ácido etanoico < ácido fênico.
- d) ácido fênico < ácido etanoico < ácido carbônico < ácido fosfórico.
- e) ácido etanoico < ácido carbônico < ácido fênico < ácido fosfórico.

- 12) O hidróxido de amônio, em solução 10⁻³ M, apresenta grau de ionização 1% em temperatura ambiente. Sua constante de ionização valerá, aproximadamente, nessa temperatura:
- a) 10⁻²
- b) 10⁶
- c) 10⁻³
- d) 10⁻⁷
- e) 10⁻⁴
- 13) Abaixo, são fornecidas as constantes de dissociação para alguns ácidos monopróticos a 25°C:

Ácido	K a
Acético	1,8 x 10 ⁻⁵
Cloroso	1,1 x 10 ⁻²
Cianídrico	4,0 x 10 ⁻¹⁰
Fluorídrico	6,7 x 10 ⁻⁴
Hipocloroso	3,2 x 10 ⁻⁸

Considerando soluções aquosas contendo a mesma concentração desses ácidos, a ordenação **CORRETA** de suas forças é

- a) cloroso > fluorídrico > acético> hipocloroso > cianídrico.
- b) cianídrico > hipocloroso> acético > fluorídrico > cloroso.
- c) fluorídrico > cianídrico > hipocloroso> acético > cloroso.
- d) fluorídrico = cianídrico = hipocloroso = acético = cloroso, pois são monopróticos.
- 14) Considerando que, para o ácido acético ($HC_2H_3O_2$), o valor de Ka = 1,8 x 10^{-5} mol/L, e seu grau do ionização sendo de 1,3% calcule a concentração de [H^{+}].
- a) $2,1 \times 10^{-3} \text{ mol/L}$
- b) 1,25 x 10⁻² mol/L
- c) $2.0 \times 10^{-3} \text{ mol/L}$
- d) 1,43 x 10⁻³ mol/L
- e) 1,5 x 10⁻² mol/L
- 15) A fadiga muscular, comum quando se executa um grande esforço físico, é causada pelo acúmulo do Ácido Láctico (HC₃H₅O₃) nas fibras musculares de nosso organismo. Considerando que, em uma solução aquosa

0,100M, temos 3,7% do ácido láctico dissociado determine o valor da constante de acidez (Ka). Dados de massa atômica: H = 1; O = 16; C = 12.

- a) 1.0×10^{-1}
- b) 1,4 x 10⁻⁴
- c) 2.7 x 10⁻²
- d) 3,7 x 10⁻²
- e) 3,7 x 10⁻³

16) A amônia (NH₃), molécula de estrutura semelhante à da fosfina, reage com água produzindo uma solução de caráter básico. A reação que ocorre pode ser representada pela equação química

$$NH_{3(g)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

Uma solução aquosa de NH₃ apresenta concentração inicial de 0,02 mol/L a 25°C.

Nessas condições, o valor do grau de ionização de (NH₃), em mol/L, é

Dado: Constante de basicidade de amônia a 25° C: Kb = 1.8×10^{-5}

- a) 2%
- b) 0,001
- c) 1,2 %
- d) 6 %
- e) 3 %
- 17) Uma solução preparada a partir da dissolução de ácido acético em água destilada até completar o volume de um litro apresenta pH igual a 3,0. A quantidade de matéria de ácido acético inicialmente dissolvida é aproximadamente igual a

Dados: K_a do $CH_3COOH = 2.0 \times 10^{-5} \text{ mol} \cdot L^{-1}$

- a) 1 x 10⁻⁶ mol.
- b) 1×10^{-3} mol.
- c) 5 x 10⁻² mol.
- d) 1 x 10⁻² mol.
- 18) O seriado televisivo *Breaking Bad* conta a história de um professor de química que, ao ser diagnosticado com uma grave doença, resolve entrar no mundo do crime sintetizando droga (metanfetamina) com a intenção inicial de

deixar recursos financeiros para sua família após sua morte. No seriado ele utilizava uma metodologia na qual usava metilamina como um dos reagentes para síntese da metanfetamina.

$$CH_3NH_{2(aq)} + H_2O_{(I)} \rightleftharpoons CH_3NH_3^+_{(aq)} + OH^-_{(aq)}$$

Constante de basicidade (K_b) da metilamina a 25°C : $3,6 \cdot 10^{-4}$; $\log 6 = 0,78$.

Em uma solução aquosa de metilamina na concentração inicial de 0,1 mol/L sob temperatura de 25°C. A concentração de íons OH é de?

- a) 6 x 10⁻³ mol/L
- b) 5 x 10⁻³ mol/L
- c) 3 x 10⁻⁴ mol/L
- d) 6 x 10⁻² mol/L
- e) 2 x 10⁻⁴ mol/L
- 19) A piridina (C₅H₅N) é uma substância empregada na síntese de fármacos. Sua interação com a água ocorre de acordo com o equilíbrio representado na equação:

$$K = 2 \times 10^{-9}$$

A concentração de íons OH^- de uma solução aquosade piridina $5 \times 10^{-2} \text{ mol/L é}$

- a) 1 x 10⁻¹⁰ mol/L
- b) 1 x 10⁻⁵ mol/L
- c) 1 x 10⁻⁴ mol/L
- d) 1 x 10⁻⁶ mol/L
- e) 1 x 10⁻⁸ mol/L
- 20) Em uma solução aquosa 0,100 mol/L de um ácido monocarboxílico, a 25°C, o ácido está 2% dissociado após o equilíbrio ter sido atingido. Assinale a opção que contém o valor correto da constante de dissociação desse ácido nessa temperatura.

- a) 1,4
- b) 1,4 x 10⁻³
- c) 1,4 x 10⁻⁴
- d) 4 x 10⁻⁵
- e) 3,7 x 10⁻⁴
- 21) Após seu desgaste completo, os pneus podem ser queimados para a geração de energia. Dentre os gases gerados na combustão completa da borracha vulcanizada, alguns são poluentes e provocam a chuva ácida. Para evitar que escapem para a atmosfera, esses gases podem ser borbulhados em uma solução aquosa contendo uma substância adequada.

Considere as informações das substâncias listadas no quadro.

Substância	Equilíbrio em solução aquosa	Valor da const. de equilíbrio
Fenol	$C_6H_5OH + H_2O \rightleftharpoons$ $\rightleftharpoons C_6H_5O^- + H_3O^+$	1,3 · 10 ⁻¹⁰
Piridina	$C_5H_5N + H_2O \rightleftharpoons$ $\rightleftharpoons C_5H_5NH^+ + OH^-$	1,7 · 10 ⁻⁹
Metilamina	$CH_3NH_2 + H_2O \rightleftharpoons$ $\rightleftharpoons CH_3NH_3^+ + OH^-$	4,4 · 10 ⁻⁴
Hidrogeno- fosfato de potássio	$HPO_4^{2^-} + H_2O \rightleftharpoons$ $\rightleftharpoons HPO_4^{2^-} + H_3O^+$	2,8 · 10 ⁻²
Hidrogenos- sulfato de potássio	$HSO_4^- + H_2O \rightleftharpoons$ $\rightleftharpoons SO_4^{2-} + H_3O^+$	3,1 · 10 ⁻²

Dentre as substâncias listadas no quadro, aquela capaz de remover com maior eficiência os gases poluentes é o(a)

- a) fenol.
- b) piridina.
- c) metilamina.
- d) hidrogenofosfato de potássio.
- e) hidrogenosulfato de potássio.
- 22) Para os ácidos listados abaixo foram preparadas soluções aquosas de mesmo volume e concentração.

I.Ácido Cloroso ($HClO_2$) $K_a = 1.1 \times 10^{-2}$ II.Ácido Fluorídrico (HF) $K_a = 6.7 \times 10^{-4}$ III.Ácido Hipocloroso (HClO) $K_a = 3.2 \times 10^{-8}$ IV.Ácido cianídrico (HCN) $K_a = 4.0 \times 10^{-10}$

Considerando as constantes de ionização (K_a), a concentração do íon H_3O^+ é:

- a) menor na solução do ácido I.
- b) maior na solução do ácido I.
- c) igual nas soluções dos ácidos III e IV.
- d) igual nas soluções dos ácidos I, II, III e IV.
- e) maior na solução do ácido IV.
- 23) Abaixo, são fornecidas as constantes de dissociação para alguns ácidos monopróticos a 25°C:

Ácido	Ka
Acético	1,8 x 10 ⁻⁵
Cloroso	1,1 x 10 ⁻²
Cianídrico	4,0 x 10 ⁻¹⁰
Fluorídrico	6,7 x 10 ⁻⁴
Hipocloroso	3.2×10^{-8}

Considerando soluções aquosas contendo a mesma concentração desses ácidos, a ordenação CORRETA de suas forças é

- a) cloroso > fluorídrico > acético> hipocloroso > cianídrico.
- b) cianídrico > hipocloroso> acético > fluorídrico > cloroso.
- c) fluorídrico > cianídrico > hipocloroso> acético > cloroso.
- d) fluorídrico = cianídrico = hipocloroso = acético = cloroso, pois são monopróticos.

24) O ácido etanoico, popularmente chamado de ácido acético, é um ácido fraco e um dos componentes do vinagre, sendo o responsável por seu sabor azedo.

Dada a constante de ionização, K_a , igual a 1,8 x 10^{-5} , assinale a alternativa que apresenta a concentração em mol· L^{-1} de H^+ em uma solução deste ácido de concentração 2,0 x 10^{-2} mol· L^{-1} .

- a) 0,00060 mol · L-1
- b) 0,000018 mol · L⁻¹
- c) 1,8 mol · L-1
- d) 3,6 mol · L⁻¹
- e) 0,000060 mol · L-1
- 25) Na tabela abaixo são dadas as reações de ionização e os respectivos valores de pK_a para alguns compostos aromáticos.

	Reação	рKа
I	CO ₂ H	4,19
II	OH O + H+	9,89
Ш	$\begin{array}{c} OH \\ O_2N \\ \hline \\ NO_2 \end{array} \begin{array}{c} O^- \\ O_2N \\ \hline \\ NO_2 \end{array} + H^+ \\ \end{array}$	0,38
IV	NH ₃ ⁺ + H ⁺	4,58

Fonte: Solomons & Fryhle, *Química Orgânica*, vols. 1 e 2, 7ª edição. LTC.

Os compostos que apresentam a maior e a menor acidez são, respectivamente,

- a) I e III.
- b) II e III.
- c) IV e I.
- d) III e II.
- e) III e IV.

26) Compreender o comportamento ácidobásico das espécies químicas em solução aquosa é de fundamental importância não somente para o entendimento do que ocorre em laboratórios, mas também diariamente ao nosso redor. Apenas como um dos exemplos tem-se o que ocorre no interior da boca e aparelho digestivo, onde essas espécies afetam o sabor, a qualidade e a digestão de nossa comida.

Abaixo são apresentados valores de constantes de ionização ácida (Ka) de espécies químicas em água a 25°C.

Espécie Química	Ka
Ácido fluorídrico	7,0 x 10 ⁻⁴
Ácido etanoico	1,8 x 10 ⁻⁵
Fenol	1,3 x 10 ⁻¹⁰
Ácido Carbônico	4,3 x 10 ⁻⁷
Metilamina	2,8 x 10 ⁻¹¹
Íon amônio	5,6 x 10 ⁻¹⁰

Considerando os valores de constantes de ionização ácida das referidas espécies químicas, avalie as afirmativas como verdadeiras (V) ou falsas (F).

- () O ácido etanoico apresenta o menor caráter ácido entre as espécies químicas listadas na tabela.
- () O fenol apresenta caráter básico mais acentuado dentre as espécies químicas listadas na tabela.
- () Uma solução de fenol em água apresenta maior caráter ácido do que uma solução de metilamina em água.
- () O ácido fluorídrico é a espécie que apresenta maior caráter ácido entre as espécies listadas na tabela.
- () Em relação ao comportamento básico, podemos afirmar que o íon amônio apresenta maior caráter que o ácido fluorídrico e menor do que a metilamina.

Assinale a alternativa que apresenta a ordem correta de cima para baixo.

- a) F, V, F, V, V
- b) F, V, F, V, F
- c) F, F, V, F, V
- d) V, F, V, F, V
- e) F, F, V, V, V
- 27) No quadro, são mostradas diferentes soluções aquosas e seus respectivos valores de K_a , constante de ionização ácida.

Ácido nitroso (HNO _{2(aq)})	$K_a = 5.0 \times 10^{-4}$
Ácido hipocloroso (HCℓO _(aq))	$K_a = 3.2 \times 10^{-8}$
Ácido hipobromoso (HBrO _(aq))	$K_a = 6.0 \times 10^{-9}$
Ácido carbônico (H ₂ CO _{3(aq)})	$K_a = 4.4 \times 10^{-7}$
Ácido bromídrico (HBr _(aq))	K _a > 1

Analisando os valores de K_a e considerando concentração em quantidade de matéria igual a 1 mol L⁻¹ para as soluções listadas, assinale a alternativa correta.

- a) A solução aquosa de ácido hipobromoso (HBrO_(aq)) irá apresentar caráter ácido menos acentuado do que a solução aquosa de ácido bromídrico (HBr_(ao)).
- b) A solução aquosa de ácido hipocloroso (HCIO_(aq)) irá apresentar caráter ácido menos acentuado do que a solução aquosa de ácido hipobromoso (HBrO_(aq)).
- c) A solução aquosa de ácido carbônico (H₂CO_{3(aq)}) irá apresentar caráter ácido mais acentuado do que a solução aquosa de ácido nitroso (HNO_{2(aq)}).
- d) O ácido carbônico (H₂CO_{3(aq)}), entre as soluções listadas, apresenta maior grau de ionização e, portanto, irá apresentar maior valor de pH.
- e) Dentre as soluções listadas, a solução aquosa de ácido bromídrico (HBr_(aq)), é a que irá apresentar menor grau de ionização e a que será a melhor condutora de eletricidade.

GABARITOS

- 1) B
- 2) C
- 3) A
- 4) D
- 5) A
- 6) D
- 7) D
- 8) C
- 9) E
- 10) C
- -
- 11) B
- 12) D
- 13) A
- 14) D
- 15) B
- 16) E
- 17) C
- 18) A
- 19) B
- 20) D
- 21) D
- 22) B
- 23) A
- 24) A
- 25) D
- 26) E
- 27) A